Medidas de Posición Central

Son muy eficaces ya que nos facilitan información sobre la serie de datos que estamos analizando.  La descripción de un conjunto de datos, incluye como un elemento de importancia la ubicación de éstos dentro de un contexto de valores posible. Una vez definidos los conceptos básicos en el estudio de una distribución de frecuencias de una variable, estudiaremos las distintas formas de resumir dichas distribuciones mediante medidas de posición (o de centralización), teniendo presente el error cometido en el resumen mediante las correspondientes medidas de dispersión.

En vez de manejar todos los datos sobre las variables, tarea que puede ser pesada, podemos caracterizar su distribución de frecuencias mediante algunos valores numéricos, eligiendo como resumen de los datos un valor central alrededor del cual se encuentran distribuidos los valores de la variable Son medidas estadísticas cuyo valor representa el valor del dato que se encuentra en el centro de la distribución de frecuencia, por lo que también se les llama "Medidas de Tendencia Central ".


Medidas de Posición

Son indicadores usados para señalar que porcentaje de datos dentro de una distribución de frecuencias superan estas expresiones, cuyo valor representa el valor del dato que se encuentra en el centro de la distribución de frecuencia, por lo que también se les llama " Medidas de Tendencia Central ".

Las Medidas de Posición Central son:

1- Media: es el valor medio ponderado de la serie de datos. Se pueden calcular diversos tipos de media, siendo las más utilizadas:

Media aritmética: se calcula multiplicando cada valor por el número de veces que se repite. La suma de todos estos productos se divide por el total de datos de la muestra:

 - Media geométrica: se eleva cada valor al número de veces que se ha repetido. Se multiplican todo estos resultados y al producto fiinal se le calcula la raíz "n" (siendo "n" el total de datos de la muestra).


Según el tipo de datos que se analice será más apropiado utilizar la media aritmética o la media geométrica. La media geométrica se suele utilizar en series de datos como tipos de interés anuales, inflación, etc., donde el valor de cada año tiene un efecto multiplicativo sobre el de los años anteriores. En todo caso, la media aritmética es la medida de posición central más utilizada.


2- Mediana: es el valor de la serie de datos que se sitúa justamente en el centro de la muestra (un 50% de valores son inferiores y otro 50% son superiores).

No presentan el problema de estar influido por los valores extremos, pero en cambio no utiliza en su cálculo toda la información de la serie de datos (no pondera cada valor por el número de veces que se ha repetido).


3- Moda: es el valor que más se repite en la muestra.

No hay comentarios:

Publicar un comentario